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Abstract. Percolation in a three-dimensional lattice, bounded by two free plane surfaces 
meeting at an angle a, is studied within a real space renormalisation scheme. The edge 
critical behaviour at various surface and bulk transitions is analysed. We do not find 
evidence for a first-order edge transition at higher values of a, as has recently been observed 
for an king model at an edge. Dependence of the edge scaling power ye on the opening 
angle a has been confirmed. 

Critical behaviour in semi-infinite systems has attracted much attention during the last 
few years [ 11. These systems, besides being of practical experimental importance, 
present many novel features. Various theoretical techniques, like mean-field theory 
[ 1,2], field-theory methods [3,4] and real space renormalisation groups (RSRG) [5-91 
have been applied to study such systems. In a semi-infinite system, e.g., the three- 
dimensional Ising model with a free surface, four types of phase transitions can occur: 
ordinary, surface, extraordinary, and special multicritical, depending on the parameters 
of the system. 

Recently some attention has been paid to the critical behaviour in a semi-infinite 
Ising model bounded by two plane surfaces which meet at  an  edge [lo-121. Larsson 
[ l l ]  has treated an Ising model at an edge with an  angle a between the intersecting 
surfaces. Using RSRG methods he found that, for angles a > a** = 297", for the special 
surface-bulk transition, the edge fixed point diverges and the edge magnetic scaling 
exponent becomes 1, equal to the dimensionality of the  edge, thus indicating a first-order 
edge transition. Larsson also studied the edge critical behaviour within the Migdal- 
Kadanoff [ 13,141 renormalisation group ( M K R G )  scheme for a q-state Potts model 
and observed that a** grows with 9. As is well known [15]  the q-state Potts model 
includes the cases of Ising model (q  = 2) and bond percolation (q  = l ) ,  and it was 
suggested [ 113 that a study of percolation in an  edge could probably clarify the situation 
with regard to the first-order edge transition. 

In this comment we report a RSRG study of bond percolation in a semi-infinite 
three-dimensional lattice bounded by two free plane surfaces meeting at an angle a. 
In contrast to the results for the Ising model [ l l ]  we do not find any evidence for a 
first-order edge transition at the special surface-bulk transition. 

We consider a semi-infinite three-dimensional lattice bounded by two plane surfaces 
meeting at an  angle a, and assume that the bonds in the bulk, surfaces and  the edge 
have concentrations p ,  q and r respectively. Using a Migdal-Kadanoff [13 ,  141 type 
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renormalisation group ( RG)  scheme, modified by Larsson [ 111 to incorporate the edge 
angle a, one gets the following RG recursion relations for the variables p ,  q and r ;  

(1) p ' =  1 - ( 1  - p  ) 

( 2 )  q ' =  1 - ( 1  - q b ) b ( l  - p  ) 

r ' =  l - ( l - r h ) ( l - q b ) b - ' ( l - p b ) h  (3)  

b bld- lJ  

b bld-21 

where 
A = ( b - l ) ( F - k )  ( b + l ) a  

(4) 

and b is the RG scaling factor, which in the present calculation we take as 3. (We 
choose b = 3 to incorporate the geometrical asymmetry of the system at the edge; for 
more details see [ 121. However, it is expected that b close to unity, as used by Larsson, 
should lead to similar results as presented here.) As discussed by Larsson [ l l ]  the 
value of A, as given by equation (4), is correct for angles a which are integer multiples 
of ~ / 3  or  7712. However, it can be applied to the general values of a as a reasonable 
approximation. 

We have used the recursion relations, equations (1)-(3), to analyse the critical 
behaviour of the edge at various surface-bulk critical points. First, we discuss the 
particular case when a = ~ / 2 ,  which shows the general features of the edge critical 
behaviour. The fixed points and the RG flow for the simple cubic lattice (a = ~ / 2 )  are 
shown in figure 1. The fixed points S, B1, B2, and BS represent the surface, ordinary, 
extraordinary, and the special transitions, respectively, for the surface-bulk system. 
The fixed point SE represents the case when the surface and the edge undergo a 
simultaneous phase transition. B3 and  BSE are the edge fixed points corresponding 
to ordinary and  special surface-bulk transitions. In terms of the percolation clusters 
[16], at these fixed points, even if the edge itself does not have an  infinite cluster 
(which is possible only when r = l ) ,  it belongs (at least a fraction of its bonds) to an  
infinite cluster extending either in the bulk or  in the surface. Similarly at the fixed 
point SE the edge bonds belong to an infinite cluster in the surface, even though there 

Figure 1. Fixed points and  RG flow for a semi-infinite cubic lattice with an  edge ( a  = 90"). 
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are no bonds present in the bulk. (In this case the system is equivalent to two free 
plane intersecting surfaces inclined at an angle a.) At the three fixed points SE, B3, 
and BSE the edge variable r turns out to be irrelevent and the edge critical behaviour 
is governed either by the surface or by the bulk critical exponents, depending on the 
type of surface-bulk transition. 

Now we discuss the edge critical behaviour for general values 0" < a < 360". We 
used the edge recursion relation equation (3) to calculate the edge fixed point r* and 
the edge scaling exponent y e  (which is related to the correlation length exponent v, 
through ye  = b'"'e) for this range of the values of a at the ordinary and special 
surface-bulk transitions. The results for the edge fixed point are shown in figure 2 
and the edge scaling exponent is shown in figure 3. At the ordinary transition the edge 
fixed point becomes unphysical (negative) for angles cy < a* = 38". This result is 
different from that of Larsson [ l l ]  for an Ising model where a* is found to be 53". 
For the range 38" < a < 360" the edge fixed point and scaling exponent, at the ordinary 
transition, are continuously varying functions of cy. 

0 90 180 270 360 
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Figure 2. Variation of edge fixed point at special (A) and ordinary ( B )  surface-bulk 
transitions. 
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Figure 3. Variation of edge scaling exponent ye at special (full  line) and ordinary (dotted 
curve) transitions. 
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At the special transition the edge fixed point shows a very smooth behaviour and  
remains finite for all the values of a. This is contrary to the case of the Ising model 
at an edge [ 111 where at the special transition the edge fixed point was found to diverge 
for a > a** = 297", and the edge magnetic exponent became 1, equal to the dimensional- 
ity of the edge, indicating a first-order edge transition. In our case, for percolation in 
an  edge, the edge exponent always remains less than one. Thus our  results d o  not 
show any evidence of a first-order edge transition. 

Our results for the surface critical behaviour are in agreement with the theory of 
Bray and  Moore [17] and  recent results on surface effects on percolation [18], predicting 
a surface-bulk cooperation for a three-dimensional semi-infinite system. On the other 
hand the edge does not show any cooperative behaviour and no edge phase transition 
curve is observed below the one-dimensional percolation threshold ( re  = l ) ,  as is 
expected. Recently Grassberger [ 191 has studied the spreading of three-dimensional 
percolation where the seed consists of an edge in a semi-infinite system. However, it 
is not very clear how our exponents are related to Grassberger's surface and edge 
exponents z ,  and z2,  as the two situations are little different. 

In conclusion we have studied percolation in an  edge for various opening angles 
a using a RSRG method. We find that the edge always undergoes a second-order phase 
transition, along with the surface-bulk transition. The edge critical behaviour is 
governed either by the bulk or by the surface exponents. Our calculations have the 
usual limitations which are common with the M K  type RG and perhaps a better RG 

scheme or a Monte Carlo simulation on such systems could throw more light. 

This work was partly supported by CNPq  through Grant no 40.1488/84-FA. 
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